What is the S to the 10-th power, if S is the sum of the solutions of the equation 2x2 - 2ix +10=0, where i=√(-1).

Respuesta :

[tex]2x^2-2ix+10=0\implies x=\dfrac{-(-2i)\pm\sqrt{(-2i)^2-4\times2\times10}}{2\times2}=\dfrac{2i\pm\sqrt{-84}}4[/tex]

When you add the roots, the square root terms will cancel, leaving you with

[tex]S=\dfrac{2i}4+\dfrac{2i}4=\dfrac{4i}4=i[/tex]

and so [tex]S^{10}=i^{10}=(i^4)^2i^2=-1[/tex].